The metabolic cost of walking on gradients with a waddling gait.

نویسندگان

  • Robert L Nudds
  • Jonathan R Codd
چکیده

Using open-flow respirometry and video footage (25 frames s(-1)), the energy expenditure and hindlimb kinematics of barnacle geese, Branta leucopsis, were measured whilst they were exercising on a treadmill at gradients of +7 and -7 deg, and on a level surface. In agreement with previous studies, ascending a gradient incurred metabolic costs higher than those experienced on level ground at comparable speeds. The geese, however, are the first species to show an increased duty factor when ascending a gradient. This increased duty factor was accompanied by a longer stance time, which was probably to enable the additional force required for ascending to be generated. Contrary to previous findings, the geese did not experience decreased metabolic costs when descending a gradient. For a given speed, the geese took relatively shorter and quicker strides when walking downhill. This 'choppy' stride and perhaps a lack of postural plasticity (an inability to adopt a more crouched posture) may negate any energy savings gained from gravity's assistance in moving the centre of mass downhill. Also contrary to previous studies, the incremental increase in metabolic cost with increasing speed was similar for each gradient, indicating that the efficiency of locomotion (mechanical work done/chemical energy consumed) is not constant across all walking speeds. The data here suggest that there are species-specific metabolic responses to locomotion on slopes, as well as the established kinematics differences. It is likely that a suite of factors, such as ecology, posture, gait, leggedness and foot morphology, will subtly affect an organism's ability to negotiate gradients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of optimal step length in a seven-link model with margin of stability method

In a walking cycle design, maximizing the upright balance should be considered in addition to the kinematic constraints, energy consumption rate must be considered. The purpose of this study is to find the optimal step length obtained for each person according to the physical features. In this research, in order to minimize energy consumption rate by considering maximum balance two cost functio...

متن کامل

The Effect of Partial Weight Support with Ground Walking Training on Temporal and Spatial Gait in Patients with Chronic Stroke

Background. There have been many studies on partial weight support walking training. However, most studies have been performed in treadmill settings, not in actual walking environments. Objectives. This study aimed to investigate the effect of partial weight support ground walking training on the temporal and spatial gait parameters of chronic stroke patients. Methods. This study was designed...

متن کامل

Effect of different walking speed on the gait kinematics of individuals with knee varus

The purpose of current study was to investigate the spatio-temporal gait parameters and knee varus angle during walking at different speeds in young with knee varus. 18 subjects with varus deformity classified at grade 3 of bowleg and 17 healthy subjects, volunteered to participate in this study. The following variables include stance, swing, double support and cycle time, cadence, stride le...

متن کامل

Changes in Gait Pattern During Smartphone and Tablet Use

Objectives: There exists no study concerning gait pattern while engaging in dual-task activities on different sizes of mobile devices. The present study aimed to compare gait patterns during normal walking, walking with smartphone use, and walking with tablet use.  Methods: Seventeen healthy female participants with an age range of 19-24 years (mean±SD age: 20.29±1.61 years, weight: 49.82±4.46...

متن کامل

Mind your step: metabolic energy cost while walking an enforced gait pattern.

The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2012